Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis.

نویسندگان

  • Sai-Yong Zhu
  • Xiang-Chun Yu
  • Xiao-Jing Wang
  • Rui Zhao
  • Yan Li
  • Ren-Chun Fan
  • Yi Shang
  • Shu-Yuan Du
  • Xiao-Fang Wang
  • Fu-Qing Wu
  • Yan-Hong Xu
  • Xiao-Yan Zhang
  • Da-Peng Zhang
چکیده

Many biochemical approaches show functions of calcium-dependent protein kinases (CDPKs) in abscisic acid (ABA) signal transduction, but molecular genetic evidence linking defined CDPK genes with ABA-regulated biological functions at the whole-plant level has been lacking. Here, we report that ABA stimulated two homologous CDPKs in Arabidopsis thaliana, CPK4 and CPK11. Loss-of-function mutations of CPK4 and CPK11 resulted in pleiotropic ABA-insensitive phenotypes in seed germination, seedling growth, and stomatal movement and led to salt insensitivity in seed germination and decreased tolerance of seedlings to salt stress. Double mutants of the two CDPK genes had stronger ABA- and salt-responsive phenotypes than the single mutants. CPK4- or CPK11-overexpressing plants generally showed inverse ABA-related phenotypes relative to those of the loss-of-function mutants. Expression levels of many ABA-responsive genes were altered in the loss-of-function mutants and overexpression lines. The CPK4 and CPK11 kinases both phosphorylated two ABA-responsive transcription factors, ABF1 and ABF4, in vitro, suggesting that the two kinases may regulate ABA signaling through these transcription factors. These data provide in planta genetic evidence for the involvement of CDPK/calcium in ABA signaling at the whole-plant level and show that CPK4 and CPK11 are two important positive regulators in CDPK/calcium-mediated ABA signaling pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Arabidopsis calcium-dependent protein kinase, CPK6, functions as a positive regulator of methyl jasmonate signaling in guard cells.

Previous studies have demonstrated that methyl jasmonate (MeJA) induces stomatal closure dependent on change of cytosolic free calcium concentration in guard cells. However, these molecular mechanisms of intracellular Ca(2+) signal perception remain unknown. Calcium-dependent protein kinases (CDPKs) function as Ca(2+) signal transducers in various plant physiological processes. It has been repo...

متن کامل

Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells

A central question is how specificity in cellular responses to the eukaryotic second messenger Ca(2+) is achieved. Plant guard cells, that form stomatal pores for gas exchange, provide a powerful system for in depth investigation of Ca(2+)-signaling specificity in plants. In intact guard cells, abscisic acid (ABA) enhances (primes) the Ca(2+)-sensitivity of downstream signaling events that resu...

متن کامل

CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis.

Plants respond to environmental stress by activating "stress genes." The plant hormone abscisic acid (ABA) plays an important role in stress-responsive gene expression. Although Ca(2+) serves as a common second messenger in signaling stress and ABA, little is known about the molecular basis of Ca(2+) action in these pathways. Here, we show that CIPK3, a Ser/Thr protein kinase that associates wi...

متن کامل

Calcium Sensor–Associated Protein Kinase That Regulates Abscisic Acid and Cold Signal Transduction in Arabidopsis

Plants respond to environmental stress by activating “stress genes.” The plant hormone abscisic acid (ABA) plays an important role in stress-responsive gene expression. Although Ca 2 serves as a common second messenger in signaling stress and ABA, little is known about the molecular basis of Ca 2 action in these pathways. Here, we show that CIPK3 , a Ser/Thr protein kinase that associates with ...

متن کامل

Proteomic identification of annexins, calcium-dependent membrane binding proteins that mediate osmotic stress and abscisic acid signal transduction in Arabidopsis.

Comparative proteomic analysis of the Arabidopsis thaliana root microsomal fraction was performed to identify novel components of salt stress signaling. Among the salt-responsive microsomal proteins, two spots that increased upon salt treatment on a two-dimensional gel were identified as the same protein, designated annexin 1 (AnnAt1). Annexins comprise a multigene family of Ca2+-dependent memb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 19 10  شماره 

صفحات  -

تاریخ انتشار 2007